

NILASAILA INSTITUTE OF SCIENCE & TECHNOLOGY SERGARH-756060, BALASORE (ODISHA) (Approved by AICTE& affiliated to SCTE&VT, Odisha)

LESSON PLAN

SUBJECT: Th-2 (STRENGTH OF MATERIAL)

CHAPTER WISE DISTRIBUTION OF PERIODS

Sl.No.	Name of the chapter as per the Syllabus	No. of Periods as per the Syllabus	No. of periods actually needed
1	Simple Stress & Strain	10	10
2	Thin cylindrical and spherical shell under internal pressure	8	8
3	Two dimensional stress systems	10	10
4	Bending moment& shear force	10	10
5	Theory of simple bending	10	10
6	Combined direct & Bending stresses	6	6
7	Torsion	6	6
	Total Period:	60	60

Discipline: AUTOMOBILE ENGINEERING	Semester: 3rd	Name of the Teaching Faculty: Er. Nihar Ranjan Sahoo	
Week	Class Day	Theory / Practical Topics	
1 st	1 st	Introduction to Strength of Material .	
	2 nd	1.0 Simple stress& strain 1.1 Types of load, stresses & strains,(Axial and tangential) Hooke's law, Young's modulus, bulk modulus, modulus of rigidity.	
	3 rd	Poisson's ratio, derive the relation between three elastic constants,	
	4 th	1.2 Principle of super position, stresses in composite section	
2 nd	1 st	1.2 Principle of super position, stresses in composite section	
	2 nd	1.3 Temperature stress, determine the temperature stress in composite bar (single core)	
	3 rd	1.3 Temperature stress, determine the temperature stress in composite bar (single core)	
	4 th	1.4 Strain energy and resilience, Stress due to gradually applied, suddenly applied and impact load	
	1 st	1.4 Strain energy and resilience, Stress due to gradually applied, suddenly applied and impact load	
a rd	2 nd	1.5 Simple problems on above.	
3 rd	3 rd	1.5 Simple problems on above.	
	4 th	2.0 Thin cylinder and spherical shell under internal pressure 2.1 Definition of hoop and longitudinal stress, strain	
4 th	1 st	2.1 Definition of hoop and longitudinal stress, strain	
	2 nd	2.2 Derivation of hoop stress, longitudinal stress, hoop strain, longitudinal strain and volumetric strain	

4 th	3 rd	2.2 Derivation of hoop stress, longitudinal stress, hoop strain, longitudinal strain and volumetric strain	
	4 th	2.3 Computation of the change in length, diameter and volume	
5 th	1 st	2.3 Computation of the change in length, diameter and volume	
	2 nd	2.4 Simple problems on above	
	3 rd	2.4 Simple problems on above	
	4 th	3.0 Two dimensional stress systems 3.1 Determination of normal stress, shear stress and resultant stress on oblique plane	
	1 st	3.1 Determination of normal stress, shear stress and resultant stress on oblique plane	
6 th	2 nd	3.1 Determination of normal stress, shear stress and resultant stress on oblique plane	
	3 rd	3.2 Location of principal plane and computation of principal stress	
	4 th	3.2 Location of principal plane and computation of principal stress	
7 th	1 st	3.2 Location of principal plane and computation of principal stress	
	2 nd	3.3 Location of principal plane and computation of principal stress and Maximum shear stress using Mohr's circle	
	3 rd	3.3 Location of principal plane and computation of principal stress and Maximum shear stress using Mohr's circle	
	4 th	3.3 Location of principal plane and computation of principal stress and Maximum shear stress using Mohr's circle	
8 th	1 st	3.3 Location of principal plane and computation of principal stress and Maximum shear stress using Mohr's circle	

	l	
8 th	2 nd	4.0 Bending moment& shear force 4.1 Types of beam and load
	3 rd	4.2 Concepts of Shear force and bending moment
	4 th	4.3 Shear Force and Bending moment diagram and its salient features illustration in cantilever beam
9 th	1 st	4.3 Shear Force and Bending moment diagram and its salient features illustration in cantilever beam
	2 nd	4.3 Shear Force and Bending moment diagram and its salient features illustration in cantilever beam, simply supported beam
	3 rd	4.3 Shear Force and Bending moment diagram and its salient features illustration in cantilever beam, simply supported beam
	4 th	4.3 Shear Force and Bending moment diagram and its salient features illustration in cantilever beam, simply supported beam
10 th	1 st	4.3 Shear Force and Bending moment diagram and its salient features illustration in cantilever beam, simply supported beam and over hanging beam under point load and uniformly distributed load
	2 nd	4.3 Shear Force and Bending moment diagram and its salient features illustration in cantilever beam, simply supported beam and over hanging beam under point load and uniformly distributed load
	3 rd	4.3 Shear Force and Bending moment diagram and its salient features illustration in cantilever beam, simply supported beam and over hanging beam under point load and uniformly distributed load
	4 th	INTERNAL ASSESMENT
11 th	1 st	INTERNAL ASSESMENT
	2 nd	5.0 Theory of simple bending 5.1 Assumptions in the theory of bending,
	3 rd	5.2 Bending equation, Moment of resistance, Section modulus& neutral axis.
	4 th	5.2 Bending equation, Moment of resistance, Section modulus& neutral axis.

12 th	1 st	5.2 Bending equation, Moment of resistance, Section modulus& neutral axis.
	2 nd	5.2 Bending equation, Moment of resistance, Section modulus& neutral axis.
	3 rd	5.3 Solve simple problems.
	4 th	5.3 Solve simple problems.
13 th	1 st	5.3 Solve simple problems.
	2 nd	5.3 Solve simple problems.
	3 rd	5.3 Solve simple problems.
	4 th	6.0 Combined direct & bending stresses 6.1 Define column
14 th	1 st	6.2 Axial load, Eccentric load on column,
	2 nd	6.3 Direct stresses, Bending stresses, Maximum& Minimum stresses. Numerical problems on above.
	3 rd	6.3 Direct stresses, Bending stresses, Maximum& Minimum stresses. Numerical problems on above.
	4 th	6.4 Buckling load computation using Euler's formula (no derivation) in Columns with various end conditions
15 th	1 st	6.4 Buckling load computation using Euler's formula (no derivation) in Columns with various end conditions
	2 nd	7.0 Torsion 7.0 Assumption of pure torsion
	3 rd	7.1 The torsion equation for solid and hollow circular shaft

15 th	4 th	7.1 The torsion equation for solid and hollow circular shaft
	1 st	7.1 The torsion equation for solid and hollow circular shaft
16 th	2 nd	7.2 Comparison between solid and hollow shaft subjected to pure torsion
	3 rd	7.2 Comparison between solid and hollow shaft subjected to pure torsion
	4 th	Revision .